REFERENCES


(2) Ramsden et al., Exercise increases the vulnerability of rat hippocampal neurons to kainate lesion. *Currently in publication*.

(3) McCloskey et al., Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. *Brain Research*. 2001; 168-175.

(4) Trejo et al., Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. *Journal of Neuroscience*. 2001; 1628-1634.

(5) Carro et al., circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. *Journal of Neuroscience*. 2001; 5678-5684.


(7) Berchtold et al., Estrogen and exercise interact to regulate brain-derived neurotropic factor mRNA and protein expression in the hippocampus. *European Journal of Neuroscience* (2001); 1-14.


(9) Praag et al., Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. *Nature Neuroscience* (1997); 266-270.


(11) Liu et al., Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. *Journal of Applied Physiology* (2000); 21-


(14)Friedland et al, Patients with Alzheimer’s Disease have reduced activities in midlife compared with healthy control-group members. *PNAS* (2001); 3440-3445.